Dengan menggunakan MATLAB, bagaimana saya dapat menemukan rata-rata pergerakan hari ke-3 dari kolom matriks tertentu dan menambahkan rata-rata bergerak ke matriks tersebut. Saya mencoba menghitung rata-rata pergerakan 3 hari dari bawah ke atas matriks. Saya telah memberikan kode saya: Dengan matriks dan topeng berikut ini: Saya telah mencoba menerapkan perintah konv tetapi saya menerima kesalahan. Inilah perintah konv yang saya coba gunakan pada kolom ke 2 matriks a: Output yang saya inginkan diberikan dalam matriks berikut: Jika Anda memiliki saran, saya akan sangat menghargainya. Terima kasih Untuk kolom 2 dari matriks a, saya menghitung rata-rata pergerakan 3 hari sebagai berikut dan menempatkan hasilnya di kolom 4 dari matriks a (saya mengganti nama matriks sebagai 39desiredOutput39 hanya untuk ilustrasi). Rata-rata 3 hari dari 17, 14, 11 adalah 14 rata-rata 3 hari 14, 11, 8 adalah 11 rata-rata 3 hari 11, 8, 5 adalah 8 dan rata-rata 3 hari 8, 5, 2 adalah 5. Tidak ada nilai di bawah 2 baris untuk kolom ke-4 karena penghitungan untuk rata-rata pergerakan 3 hari dimulai dari bawah. Hasil 39valid39 tidak akan ditampilkan sampai setidaknya 17, 14, dan 11. Mudah-mudahan ini masuk akal ndash Aaron 12 Jun 13 at 1:28 Secara umum akan membantu jika Anda menunjukkan kesalahannya. Dalam hal ini Anda melakukan dua hal yang salah: Pertama, konvolusi Anda perlu dibagi tiga (atau panjang rata-rata bergerak) Kedua, perhatikan ukuran c. Anda tidak bisa hanya cocok c ke a. Cara khas untuk mendapatkan rata-rata bergerak adalah dengan menggunakan yang sama: tapi itu tidak seperti yang Anda inginkan. Sebagai gantinya Anda terpaksa menggunakan beberapa baris: 29 September, 2013 Bergerak rata-rata dengan konvolusi Apa itu moving average dan apa gunanya Bagaimana cara moving averaging dilakukan dengan menggunakan konvolusi Moving average adalah operasi sederhana yang biasa digunakan untuk menekan noise dari Sinyal: kami tetapkan nilai masing-masing titik ke rata-rata nilai di lingkungannya. Dengan rumus: Disini x adalah input dan y adalah sinyal output, sedangkan ukuran jendela adalah w, seharusnya aneh. Rumus di atas menggambarkan operasi simetris: sampel diambil dari kedua sisi titik sebenarnya. Berikut adalah contoh kehidupan nyata. Titik di mana jendela diletakkan sebenarnya berwarna merah. Nilai di luar x seharusnya nol: Untuk bermain-main dan melihat efek rata-rata bergerak, lihatlah demonstrasi interaktif ini. Cara melakukannya dengan konvolusi Seperti yang mungkin Anda ketahui, menghitung rata-rata pergerakan sederhana sama dengan konvolusi: pada kedua kasus, sebuah jendela tergelincir sepanjang sinyal dan elemen di jendela diringkas. Jadi, cobalah untuk melakukan hal yang sama dengan menggunakan konvolusi. Gunakan parameter berikut: Output yang diinginkan adalah: Sebagai pendekatan pertama, mari kita coba apa yang kita dapatkan dengan menggabungkan sinyal x dengan kernel k berikut: Outputnya persis tiga kali lebih besar dari yang diharapkan. Bisa juga dilihat, bahwa nilai output adalah rangkuman ketiga elemen di jendela. Hal ini karena selama konvolusi jendela meluncur, semua elemen di dalamnya dikalikan dengan satu dan kemudian diringkas: yk 1 cdot x 1 cdot x 1 cdot x Untuk mendapatkan nilai y yang diinginkan. Output harus dibagi dengan 3: Dengan formula termasuk pembagiannya: Tapi bukankah optimal melakukan pembagian selama konvolusi Inilah ide dengan menata ulang persamaan: Jadi kita akan menggunakan kernel k berikut: Dengan cara ini kita akan Mendapatkan output yang diinginkan: Secara umum: jika kita ingin melakukan moving average dengan konvolusi yang memiliki ukuran jendela w. Kita akan menggunakan kernel k berikut: Fungsi sederhana yang melakukan moving average adalah: Contoh penggunaan adalah: Moving Average sebagai Filter Rata-rata bergerak sering digunakan untuk merapikan data dengan adanya noise. Rata-rata pergerakan sederhana tidak selalu dikenali sebagai filter Finite Impulse Response (FIR) yang sebenarnya, padahal sebenarnya adalah filter yang paling umum dalam pemrosesan sinyal. Mengobati itu sebagai filter memungkinkan membandingkannya dengan, misalnya filter windowed-sinc (lihat artikel tentang filter low-pass, high-pass, dan band-pass dan band-reject untuk contohnya). Perbedaan utama dengan filter tersebut adalah bahwa rata-rata bergerak cocok untuk sinyal yang informasi bermanfaatnya terdapat dalam domain waktu. Pengukuran perataan dengan rata-rata adalah contoh utama. Saringan berjejer-sinc, di sisi lain, adalah pemain yang kuat dalam domain frekuensi. Dengan pemerataan dalam pengolahan audio sebagai contoh tipikal. Ada perbandingan yang lebih rinci dari kedua jenis filter dalam Domain Time vs. Frekuensi Kinerja Filter. Jika Anda memiliki data yang baik waktu dan domain frekuensi penting, Anda mungkin ingin melihat Variasi pada Moving Average. Yang menyajikan sejumlah versi bobot rata-rata bergerak yang lebih baik dalam hal itu. Rata-rata pergerakan panjang (N) dapat didefinisikan sebagai ditulis seperti biasanya diterapkan, dengan sampel keluaran saat ini sebagai rata-rata sampel (N) sebelumnya. Terlihat sebagai filter, moving average melakukan konvolusi dari urutan input (xn) dengan pulsa panjang persegi panjang (N) dan tinggi (1N) (untuk membuat area pulsa, dan, karenanya, gain filter , satu ). Dalam prakteknya, yang terbaik adalah mengambil (N) ganjil. Meskipun rata-rata bergerak juga dapat dihitung dengan menggunakan sejumlah sampel, dengan menggunakan nilai ganjil untuk (N) memiliki keuntungan bahwa penundaan filter akan menjadi jumlah sampel integer, karena penundaan filter dengan (N) Contohnya persis ((N-1) 2). Rata-rata bergerak kemudian dapat disesuaikan persis dengan data asli dengan menggesernya dengan bilangan bulat sampel. Domain Waktu Karena rata-rata bergerak adalah konvolusi dengan pulsa persegi panjang, respons frekuensinya adalah fungsi sinc. Hal ini membuat sesuatu seperti dual filter windowed-sinc, karena itu adalah konvolusi dengan pulsa sinc yang menghasilkan respons frekuensi persegi panjang. Ini adalah respon frekuensi sinc yang membuat rata-rata bergerak menjadi pemain miskin dalam domain frekuensi. Namun, kinerjanya sangat bagus dalam domain waktu. Oleh karena itu, sangat sempurna untuk memperlancar data agar terhapus noise sementara pada saat bersamaan tetap melakukan respon langkah cepat (Gambar 1). Untuk Additive White Gaussian Noise (AWGN) biasa yang sering diasumsikan, sampel rata-rata (N) memiliki efek meningkatkan SNR dengan faktor (sqrt N). Karena kebisingan untuk sampel individu tidak berkorelasi, tidak ada alasan untuk memperlakukan setiap sampel secara berbeda. Oleh karena itu, rata-rata bergerak, yang memberi setiap sampel bobot yang sama, akan menyingkirkan jumlah suara maksimal untuk ketajaman respons langkah tertentu. Implementasi Karena itu adalah filter FIR, moving average bisa diimplementasikan melalui konvolusi. Ini kemudian akan memiliki efisiensi yang sama (atau kurang) seperti filter FIR lainnya. Namun, bisa juga diimplementasikan secara rekursif, dengan cara yang sangat efisien. Ini mengikuti langsung dari definisi bahwa Rumus ini adalah hasil dari ungkapan untuk (yn) dan (yn1), yaitu, di mana kita melihat bahwa perubahan antara (yn1) dan (yn) adalah bahwa istilah tambahan (xn1N) muncul di Akhir, sementara istilah (xn-N1N) dihapus dari awal. Dalam aplikasi praktis, seringkali memungkinkan untuk meninggalkan pembagian dengan (N) untuk setiap istilah dengan mengkompensasi keuntungan yang dihasilkan (N) di tempat lain. Implementasi rekursif ini akan jauh lebih cepat daripada konvolusi. Setiap nilai baru (y) dapat dihitung hanya dengan dua penambahan, dan bukan penambahan (N) yang diperlukan untuk implementasi definisi yang langsung. Satu hal yang harus diwaspadai dengan implementasi rekursif adalah kesalahan pembulatan akan terakumulasi. Ini mungkin atau mungkin tidak menjadi masalah bagi aplikasi Anda, namun ini juga menyiratkan bahwa implementasi rekursif ini akan benar-benar bekerja lebih baik dengan implementasi bilangan bulat daripada dengan bilangan floating-point. Ini sangat tidak biasa, karena implementasi floating point biasanya lebih sederhana. Kesimpulan dari semua ini pasti bahwa Anda tidak boleh meremehkan kegunaan filter rata-rata bergerak sederhana dalam aplikasi pemrosesan sinyal. Filter Design Tool Artikel ini dilengkapi dengan alat Filter Design. Percobaan dengan nilai yang berbeda untuk (N) dan visualisasikan filter yang dihasilkan. Coba sekarang
No comments:
Post a Comment